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Abstract Arboviruses are arthropod-borne viruses that
exhibit worldwide distribution, contributing to systemic
and neurologic infections in a variety of geographical
locations. Arboviruses are transmitted to vertebral hosts
during blood feedings by mosquitoes, ticks, biting flies,
mites, and nits. While the majority of arboviral infec-
tions do not lead to neuroinvasive forms of disease,
they are among the most severe infectious risks to the
health of the human central nervous system. The neuro-
logic diseases caused by arboviruses include meningitis,
encephalitis, myelitis, encephalomyelitis, neuritis, and
myositis in which virus- and immune-mediated injury
may lead to severe, persisting neurologic deficits or
death. Here we will review the major families of emerg-
ing arboviruses that cause neurologic infections, their
neuropathogenesis and host neuroimmunologic re-
sponses, and current strategies for treatment and preven-
tion of neurologic infections they cause.
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Introduction to Encephalitic Arboviruses

Arthropod-borne viruses (arboviruses) are transmitted to hosts
during blood feeding of mosquitos, ticks, biting flies, mites,
and nits. While the majority of arbovirus infections do not
cause neuroinvasive disease, there are several arbovirus fam-
ilies with members that cause neuroinvasive disease in verte-
brate hosts worldwide. The encephalitic members of the
Togaviridae family alphaviruses (new-world group) consist
of the Eastern, Western, and Venezuelan equine encephalitic
viruses (EEEV, WEEV, and VEEV, respectively). The VEEV
complex comprises 14 subtypes and varieties and includes 7
different virus species, while EEEV includes North and South
American variants, with 4 major lineages [1]. Chickungunya
virus (CHIKV) is another member of the Togaviridae family
(old-world group) and Semiliki Forest virus complex that can
cause central nervous system (CNS) disease [2]. Japanese en-
cephalitis virus (JEV), West Nile virus (WNV), Saint Louis
encephalitis virus (SLEV), and Murray Valley encephalitis
virus (MVEV) comprise the Japanese encephalitis (JE)
serogroup of neuropathogenic flaviviruses. Additional emerg-
ing mosquito-borne flaviviruses that can infect the CNS are
dengue and Zika viruses (DENV and ZIKV, respectively).
Arbovirus members of the Bunyaviridae family that cause
neuroinvasive disease include viruses from 2 different genera,
Orthobunyavirus and Phlebovirus. The Orthobunyaviruses
California encephalitis virus (CEV) and La Crosse virus
(LACV) are members of the California serogroup viruses,
which include 15 related arboviruses that cause neuroinvasive
and non-neuroinvasive diseases [3]. Toscana virus (TOSV)
and Rift Valley fever virus (RVFV) belong to the genus
Phlebovirus, which is predominately transmitted by sandfly
and tick. Colorado tick fever virus (CTFV) is a neuroinvasive
member of the Reoviridae that is transmitted by the Rocky
Mountain wood tick.
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Structural Aspects of Encephalitic Arboviruses

Neuroinvasive arboviruses represent all 3 groups of RNA vi-
ruses (group III, IV, and V). Alphaviruses are enveloped vi-
ruses consisting of a positive, single-strand RNA genome
(group IV) with 2 open reading frames that are translated into
2 polyproteins comprising structural and nonstructural pro-
teins, respectively. Flaviviruses are similarly structured
enveloped, positive single-strand RNA viruses. However,
flaviviruses are translated from a single open reading frame
into a polyprotein that is cleaved into mature structural and
nonstructural polypeptides by viral and host proteases. While
bunyaviruses also have spherical enveloped virions similar to
alphaviruses and flaviviruses, Bunyaviruses are comprised of
tripartite negative, single-strand RNA genomes (group V).
The large, medium, and small segments are negative sense
for orthobunyaviruses (CEVand LACV). However, the small
segment is ambisense in the phleboviruses (TOSV and
RVFV). As a group III virus, CTFV is the structurally most
divergent neuroinvasive arbovirus. CTFV virions are
nonenveloped and contain a double-strand RNA genome,
which is divided into 12 segments. As such, each viral family
utilizes distinct strategies for infection and replication.
However, the common RNA composition of these viruses
allows for higher rates of mutation, which results in diverse
viral populations that both impedes development of effective
vaccines and contributes to instances of viral emergence.

Epidemiology of Encephalitic Arboviruses

Encephalitic alphaviruses naturally cycle between mosquitoes
and birds (EEEV and WEEV), mosquitoes and rodents
(VEEV enzootic cycle), or mosquitoes and horses (VEEV
epizootic cycle) [4]. VEEV, WEEV, and EEEVare all widely
distributed in North, Central, and South America. Human in-
fection can progress rapidly to encephalitis, with fatality rates
of ~1 % in cases of VEEV and WEEV, and 50 % to 75 % in
cases of EEEV cases [5, 6]. Of the 3, VEEV is considered the
most important zoonotic pathogen, with several reported hu-
man outbreaks in South and Central Americas, primarily by
enzootic VEEV strains [7]. VEEV outbreaks of enzootic
strains in Central America have also been followed by spread
to North America with occasional fatal human cases [8].
Within North America, the human cases per year are usually
1 to 2 for WEEVand 5 to 8 for EEEV; however, in 2005 there
were 21 reported cases of EEEV [9]. Focal outbreaks of
VEEV have occurred in North America, with epidemics of
equine and human cases numbering in the hundreds, primarily
in Mexico [10]. Although the overall number of human cases
reported for these viruses is small, the possibility for disease
emergence is high owing to expansion and spread of mosquito
vectors. Additionally, there is the potential for even

moderately experienced scientists to grow VEEV, WEEV,
and/or EEEV to high titer and generate aerosol forms, which
would cause severe disease if dispersed in a dense urban or
military setting. Despite the epidemic potential of VEEV and
the high morbidity and/or case fatality rates of EEEV and
WEEV, there are no approved vaccines or therapeutics for
humans.

CHIKV is a re-emerging alphavirus that can cause severe
and fatal disease with CNS involvement of both adults and
neonates [11–14]. Prior to its re-emergence in the Indian
Ocean in 2004 and ensuing worldwide spread, CHIKV infec-
tions rarely involved the CNS. However, in recent major out-
breaks of CHIKV in La Reunion Island and the Caribbean, the
incidence of encephalitis is reportedly 187 per 100,000 infants
and 37 per 100,000 persons for adults>64 years of age [15].

JE serogroup flaviviruses cycle between birds and mosqui-
toes, and cause neurologic infections in humans, whose inci-
dences depend on age and immune status. WNV, which was
first identified in the West Nile subregion of Uganda, is now
endemic in temperate and tropical regions throughout the
world, causing yearly outbreaks of encephalitis, with a mor-
tality rate of 5 % to 10 % [16]. MVEV causes similar out-
breaks in Australia, New Guinea, and New Zealand, while
SLEV rarely causes encephalitis in the USA (<10 cases per
year) [16, 17]. JEV is the most medically important member of
the serogroup, causing 30,000 to 50,000 cases of encephalitis
and 10,000 deaths each year in Asia [18]. While these viruses
are generally transmitted via ornithophilic mosquitoes, WNV
has also been transmitted via blood products, and both WNV
and JEV can be transplacentally transmitted during pregnancy
[19, 20]. JEVand MVEV predominantly cause encephalitis in
children, whereas encephalitis due to WNVor SLEV is more
likely to occur in adults. DENV, which is endemic to>100
countries, has been reported to cause encephalitis in up to
41 % of cases [21].

ZIKV is a related, mosquito-transmitted flavivirus, first
isolated from a febrile rhesus macaque in Uganda in 1947,
which has emerged from obscurity to cause outbreaks in
Micronesia, French Polynesia, and South and Central
America [22, 23]. In adults, ZIKV infection results in a self-
limiting febrile illness associated with rash and conjunctivitis,
but severe neurologic disease can occur, including Guillain-
Barré syndrome (GBS) andmeningoencephalitis [24, 25]. The
current ZIKVoutbreak in South America has been associated
with a 20-fold increase in the rate of babies born with micro-
cephaly [22, 26], and spontaneous abortion or intrauterine
growth restriction due to placental insufficiency [27]. Since
2007, 55 countries in America, Asia, Africa, and Oceania
have detected local transmission of the virus, affecting>1.5
million people [28]. In the USA and its territories, > 1025
cases have been reported [29]. Cases of sexual transmission
of ZIKVand detection of persistent infectious ZIKV in semen
have also been reported [30–33].
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Bunyaviruses exhibit a diversity of enzootic cycles.
Mosquito-borne bunyaviruses include CEVand LACV, which
are endemic to the western and mid-west/eastern USA, re-
spectively, and cycle between mosquito and small mammals.
CEV and LACV cause an average of 75 cases of meningitis,
encephalitis, or meningoencephalitis per year with the major-
ity of disease due to LACV [34]. RVFV has caused periodic
outbreaks in Kenya, Somalia, Tanzania, Saudi Arabia, and
Yemen [35]. Outbreaks in endemic areas have occurred with
up to 20,000 cases and>500 deaths [36]. RVFV is spread via
mosquitoes or through extensive contact with blood, milk, and
body tissues from infected livestock [37]. TOSVis transmitted
by sandflies and causes 100 to 200 cases of meningoenceph-
alitis each summer in Europe and North Africa [38]. Although
the natural reservoirs for TOSV remain unidentified, canines
have been identified as potential candidates [39].

CTFV primarily cycles betweenmultiple species of rodents
and Rocky Mountain wood ticks [40, 41]. CTFV causes
symptomatic illnesses in all cases and occurring exclusively
in the western parts of the USA and Canada [42]. A total of 83
cases occurred between the years 2002 and 2012 [43].

Clinical Features of CNS Infections
with Arboviruses: Human Disease

Infections with arboviruses vary in clinical presentation from
completely asymptomatic to florid encephalitis with seizures,
coma, and death (Table 1). In general, symptomatic patients
will initially develop a flu-like illness with headache, fever,
pharyngitis, and myalgia. Depending on the virus, this may
progress to nausea, vomiting, and meningismus, or undergo
initial resolution followed by recrudescence of headache and
fever that rapidly progresses to neurologic symptoms.
Although multiple neurotropic arboviruses are endemic in
the USA, including CEV, LACV, WNV, SLEV, VEEV,
WEEV, DENV, CHIKV, ZIKV, and CTFV, symptomatic in-
fections of the CNS are rare. Meningitis and encephalitis are
the most common manifestations of neuroinvasive diseases
with any of these viruses. In this section, we will provide a
detailed review the clinical features of CNS infections with
arboviruses that occur worldwide.

Togaviridae

Natural or laboratory-acquired infections have been docu-
mented in humans with all epizootic and many enzootic
VEEV strains [44]. After a 2 to 4 day incubation period, all
patients develop an incapacitating illness with high fever,
headache, pharyngitis, malaise, and myalgia. Laboratory eval-
uation reveals lymphopenia and elevation in hepatic enzymes.
This acute phase typically lasts 24 to 48 h and is followed by a
2 to 3-week period of lethargy and anorexia. In a small

percentage of cases (0.05–4 %), patients develop encephalitis,
which occurs a few days after the acute febrile illness [45].
The overall mortality of encephalitis varies with age; the mor-
tality rate is approximately 20 % in older children and young
adults but may reach 35 % in persons aged 0 to 5 years [46].
The neuropathologic and neuroimmunologic effects of VEEV
in human encephalitis cases have not been well described
owing to lack of autopsy specimens. Gross pathologic analy-
sis of 21 lethal encephalitis cases revealed cerebral edema and
meningeal infiltrates comprised of neutrophils, lymphocytes,
and monocytes that extend to Virchow Robbins spaces and, in
some cases, CNS parenchyma [47].

Most human infections with EEEV are asymptomatic;
however, neuroinvasive forms of infection results in a higher
mortality rate andmore severe neurologic sequelae. Following
an incubation period of 5 to 15 days, infection may progress to
systemic then encephalitic disease [5]. Systemic disease pre-
sents with headache, fever, malaise, myalgia, nausea, and
vomiting. Encephalitis additionally results in photophobia,
confusion, somnolence, focal neurologic deficits, paresis, pa-
ralysis, respiratory impairment, seizures, and coma, which
may persist if the patient survives the acute illness.
However, in many cases (36–75 %) death occurs 2 to 10 days
after onset of symptoms [9]. The mortality rate is highest (50–
75 %) in patients>60 years of age with cognitive impairment
occurring in 30 to 70 % of survivors [5]. Neuropathologic
findings include neuronal injury with caspase 3 activation,
vasculitis and thrombosis, demyelination, necrosis, and men-
ingeal, perivascular, and parenchymal infiltrates comprised of
neutrophils, lymphocytes, and monocytes/macrophages [48].
Brain lesions in fatal cases occur predominantly within the
basal ganglia, thalamus, and brainstem.

WEEV infection results in more mild disease than
EEEV. Most vector-borne WEEV infections are asymptom-
atic or present as a nonspecific febrile illness. The incu-
bation period is 5 to 10 days, with a short prodromal
phase lasting approximately 1 to 4 days. However, the
signs and symptoms of encephalitic WEEV are similar to
those described for VEEV and EEEV. These signs include
somnolence, seizures, coma, and motor neuron dysfunction
[6]. The mortality rate in human WEEV encephalitis
ranges from 3 % to 15 %, depending on age and, possi-
bly, viral factors [49]. Unlike vector-borne infections,
where virus is deposited subcutaneously, the process of
neuroinvasion by aerosolized alphaviruses is more direct,
via the olfactory tract, and causes increased severity and
incidence of encephalitis [50]. For example, a laboratory
accident resulting in aerosolization and exposure to WEEV
resulted in encephalitis with a mortality of 40 % [51].
Similar to VEEV and EEEV, neurologic sequelae of
WEEV encephalitis may persist for months to years or
be permanent, and postmortem brain specimens of fatal
cases exhibit perivascular cuffs of lymphocytes and
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Table 1 Arbovirus families: vectors, geographical distribution, and the illnesses they cause

Family Virus Vector Geographical distribution Systemic illnesses Neurologic diseases

Togaviridae EEEV Mosquito (Culiseta, Aedes) Eastern and Gulf coasts of USA,
Caribbean islands, Central America,
north-east South America

Flu-like illness with nausea
and vomiting

Meningoencephalitis, coma

WEEV Mosquito (Culiseta, Culex) Mid-west and western USA, Canada Febrile illness Encephalitis

VEEV Mosquito (Culex, Aedes) South and Central Americas, south-east
and south-west USA

Flu-like illness Encephalitis

CHIKV Mosquito (Aedes) Africa, India, Southeast Asia, Caribbean
islands, south-east USA

Fever, rash, arthralgias, myalgias Rare encephalitis, GBS

Flaviviridae SLEV Mosquito (Culex) North, Central, and South America Flu-like illness with nausea Meningitis, encephalitis, coma

JEV Mosquito (Culex) Japan, North-East, South-East, and
Central
Asia, Indian subcontinent

– Meningoencephalitis with seizures

WNV Mosquito (Culex) Africa, Mediterranean region, Central
Asia,
India, Europe, North, Central, and
South Americas

Flu-like illness Meningitis, flaccid paralysis, encephalitis

ZIKV Mosquito (Aedes), sexual
transmission

Africa, India, South-East Asia, Caribbean
islands, Central, North, and South
Americas

Flu-like illness with arthralgias,
conjunctivitis

Meningoencephalitis, ADEM, GBS, IUGR,
microcephaly

DENV Mosquito (Aedes) Asia, tropical and subtropical regions of
the world

Fever, rash, headache, myalgias,
hemorrhagic fever

Encephalopathy, rare encephalitis

MVEV Mosquito (Culex, Aedes) Australia, New Zealand, New Guinea Flu-like illness with nausea Encephalitis

Bunyaviridae CEV Mosquito (Aedes) Western USA Flu-like illness with nausea and
vomiting

Meningoencephalitis with seizures

LACV Mosquito (Aedes) Mid-west and eastern USA – Meningoencephalitis with seizures

TOSV Sandfly (Phlebotomus) Europe, North Africa – Meningitis

RVFV Mosquito (Culex, Aedes) East and South Africa, Saudi Arabia Fever, hepatitis, hemorrhagic fever Encephalitis

Reoviridae CTFV Ticks (Dermacentor) Rocky Mountains of the USA Flu-like illness with nausea, vomiting, hepatitis, rash,
hemorrhagic fever

Meningitis, encephalitis

EEEV = eastern equine encephalitis virus; WEEV = western equine encephalitis virus; VEEV = Venezuelan equine encephalitis virus; CHIKV = Chikungunya virus; GBS = Guillain-Barré syndrome;
SLEV = Saint Louis encephalitis virus; JEV = Japanese encephalitis virus; WNV = West Nile virus; ZIKV = Zika virus; ADEM = acute demyelinating encephalomyelitis; IUGR = intrauterine growth
retardation; DENV = Dengue virus; MVEV = Murray Valley encephalitis virus; CEV = California encephalitis virus; LACV = La Crosse virus; TOSV = Toscana virus; RVFV = Rift Valley fever virus;
CTFV = Colorado tick fever virus

E
ncephalitic

A
rboviruses

517

Juri Katchanov
Hamid Salimi & Matthew D. Cain & Robyn S. Klein

Juri Katchanov
Robyn S. Klein rklein@dom.wustl.edu

Juri Katchanov
Neurotherapeutics (2016) 13:514–534 DOI 10.1007/s13311-016-0443-5�



neutrophils, multifocal necrosis, and gliosis throughout the
basal ganglia, thalamus, and brainstem [48].

CHIKV infection predominantly results in an acute illness
with high fever and severe arthralgias lasting weeks to months
but sometimes for years [52, 53]. However, severe and fatal
disease with CNS involvement in both adults and neonates has
been reported and include encephalitis and postinfectious syn-
dromes, including acute demyelinating encephalomyelitis and
GBS [11–15]. Neonatal infections occur via vertical transmis-
sion during pregnancy or at birth [54].

Flaviviridae

Most individuals infected with flaviviruses are asymptomatic;
however, up to 25 % of infections may present with symp-
tomatic disease that is mild or neuroinvasive [55]. JEV and
MVEV cause mild, febrile illnesses in a majority of symptom-
atic patients, with only 1 in 250 patients developing meningo-
encephalitis characterized by the rapid onset of high fever,
headache, neck stiffness, disorientation, coma, seizures, spas-
tic paralysis, movement disorders, and, in 30 % of cases,
death. Of those who survive, 20 % to 30 % exhibit persistent
motor and/or cognitive deficits with recurrent seizures [56,
57]. These illnesses occur in a bimodal distribution, affecting
the very young or nonimmune visitors to endemic regions,
and the elderly, whose immunity has waned. The neuropathol-
ogy of JEVandMVEV involves neuronal damage and inflam-
matory infiltrates, and viral antigen may be detected within
neurons of the thalamus, hippocampus, substantia nigra and
medulla oblongata [58, 59].

In contrast, SLEVand WNV cause symptomatic infections
in adults, especially those that are chronically ill, immunosup-
pressed, or elderly. In the USA, WNV transmission has also
occurred through infected organ transplants and blood prod-
ucts [60, 61], necessitating massive screening practices. Half
of symptomatic infections are limited to a febrile illness with
pharyngitis, myalgia or arthralgia, and rash [62]. Neurologic
diseases occur in the remainder, and depend on the site of
infection within the CNS. Thus, patients can present with
meningitis, encephalitis, or myelitis with flaccid paralysis
[63]. Patients with encephalitis may present with seizures,
movement disorders, or diaphragmatic paralysis necessitating
permanent dependence on mechanical ventilation [64, 65].
Neuropathologic findings include perivascular and
leptomeningeal inflammation, microglial nodules, and
neuronophagia, predominantly involving the temporal lobes
and brainstem. These findings may also occur in the spinal
cord [62, 66, 67].

Primary infection with DENV causes a self-limited, acute
febrile illness with headache, malaise, retro-orbital pain, my-
algia, arthralgia, and a generalized, maculopapular rash [68].
Dengue hemorrhagic fever (DHF) results from secondary in-
fection and is characterized by a recurrent high fever with

vascular leak causing widespread bleeding and multisystem
disorder. Presentations of CNS disorder were therefore initial-
ly attributed to DHF; however, recent studies indicate that
patients with DHF infection may present with acute encepha-
litis, GBS, and polyradiculopathy, and that DENV is directly
neurotropic [68–71].

Prior to the current outbreak, ZIKV infections in humans
were reportedly mild, with 70 % to 80 % of infections being
asymptomatic [72]. Clinical symptoms, when present, are
similar to a flu-like illness with fever, maculopapular rash,
nonpurulent conjunctivitis, fatigue, and arthralgia, and last
approximately 1 week [73]. However, since 2007, an increase
in cases of microcephaly, retinal lesions, and GBS associated
with ZIKV infection has been reported, especially in Latin
America [27, 74–76]. ZIKV-associated GBS is a pure motor
axonal variant. Infection in pregnant women causes cata-
strophic fetal abnormalities, including microcephaly, sponta-
neous abortion, and intrauterine growth restriction due to pla-
cental insufficiency [27]. Newborns with microcephaly typi-
cally have significant neurologic defects and seizures, with
variable effects on developmental milestones and cognitive
abilities [77, 78].

Bunyaviridae

Encephalitides due to CEV and LACVoccurs after initial in-
cubation periods of 3 to 7 and 5 to 15 days, respectively. Both
initially present as a summertime febrile illness with head-
ache, nausea, vomiting, abdominal pain, and lethargy [3].
Encephalitis is characterized by fever, focal neurologic abnor-
malities with altered mental status that can progress to seizures
and coma. However, the mortality rate is< 1 %. Severe illness
is more common in young children and 20 % may continue to
have seizures after recovery. The low incidence and mortality
rate has led to a lack of autopsy specimens for neuropatholog-
ic analyses.

Most RVFV infections are asymptomatic or cause a mild
febrile illness with headache, myalgias, and mild hepatitis.
In<2 % of symptomatic cases, the illness progresses to hem-
orrhagic fever, meningoencephalitis, and/or necrotizing retini-
tis leading to blindness [37]. While the overall mortality rate
for severe RFVF infections is<1 %, it may approach 50 % in
hemorrhagic cases. Neuropathologic findings include diffuse
perivascular infiltrates of lymphocytes andmacrophages, mul-
tifocal meningitis, and focal areas of neuronal necrosis and
aggregates of macrophages, lymphocytes, and neutrophils
throughout all regions of the brain [79].

Similar to other members of the Bunyaviridae, TOSV in-
fection is generally asymptomatic or causes a flu-like, febrile
illness with headache and myalgia, mostly in younger people
[38]. This newly emerging pathogen causes outbreaks of men-
ingitis and meningoencephalitis mostly in older individuals.
There have also been reports of severe cases complicated by
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hydrocephalus, deafness, and ischemic events [38].
Neuropathologic studies have been performed in a single le-
thal case of meningoencephalitis and showed extensive
perivascular and parenchymal infiltration of CD8 T cells with
microglial activation in a variety of CNS regions, including
the neocortex, basal ganglia, hypothalamus, thalamus, limbic
areas and brain stem, and infiltration of immune cells within
the meninges [80].

Reoviridae

After CTFV infection, the virus may persist in the
bloodstream for up to 4 months, which has previously
led to transfusion-acquired infections [81]. Persons in-
fected with CTFV usually exhibit signs and symptoms
within 3 to 6 days of a tick bite [82]. The illness is two
staged, with an initial episode of fever, chills, head-
aches, photophobia, myalgia, malaise, abdominal pain,
hepatosplenomegaly, nausea and vomiting, and a rash.
The second stage is heralded by a high fever with re-
turn of symptoms and an increase in their severity with
progression to meningitis, meningoencephalitis, or hem-
orrhagic fever. Children may exhibit the most severe
symptoms and require extended hospitalization; death
is extremely rare [82].

Recovery from Arbovirus Encephalitis

Survivors of arbovirus encephalitis may continue to exhibit
significant neurocognitive deficits that persist for years after
clearance of virus. For example, studies evaluating the rates of
persistent impairment in patients previously diagnosed with
WNV encephalitis via serum or cerebrospinal fluid (CSF)
IgM using memory (Hopkins Verbal Learning Test) and vi-
suospatial (Rey Complex Figure Copy and Recall) tests report
that 40% to 70% exhibit cognitive symptoms for up to 5 years
after the episode of acute infection [83–93]. Thus, for WNV
encephalitis, at a>90 % rate of survival with ~50 % incidence
of cognitive disturbance, there are currently approximately 10,
000 people living with this sequelae of neuroinvasive WNV
infections, with additional cases occurring at rates of 1000 to
3000 per year. Additional encephalitic arboviruses that lead to
neuroinvasive disease with neurocognitive sequelae in
American patients include SLEV, LACV, EEEV, and
Powassan virus, with total case numbers in the hundreds
[94–97]. Finally, worldwide, encephalitic arboviruses, includ-
ing JEVand RVFV, cause neurologic illness at the rate of 50 to
100,000 cases/year with neurocognitive sequelae in survivors
[98–100]. There are currently no diagnostic or treatment mo-
dalities for cognitive sequelae in patients that recover from
arbovirus encephalitides.

Mechanisms of Peripheral Infection, Pathogenesis,
and Host Defense

While the pathogenesis of arboviruses in humans has not been
extensively explored, the use of animal models has elucidated
conserved mechanisms and strategies in both arbovirus infec-
tion and host defense. During the course of a mosquito or tick
bite up to 106 plaque-forming units of virus can be transferred
into the host [101]. In experimental models, animals receive
viral inoculum subcutaneously to mimic arthropod-borne in-
fection. During the early phase of infection, arboviruses un-
dergo an initial period of replication in the skin. Flaviviruses,
such as WNV, replicate in both keratinocytes and skin den-
dritic cells (DCs), including Langerhans cells [102–104].
Infected DCs migrate to draining lymph nodes, leading to an
additional round of infection and subsequent entry into the
circulation via efferent lymphatic system and the thoracic
duct. Similar early replication and trafficking to draining
lymph nodes has been observed in VEEV [105]. However,
EEEV, a related alphavirus, does not replicate readily in lym-
phoid tissues but instead replicates in fibroblasts before
targeting osteoblasts [106, 107].

Once in the blood, infection spreads to visceral organs,
including the spleen and kidney. The specific cellular targets
in these tissues are not well identified, but likely targets are
subsets of DCs, macrophages, and neutrophils [108–110]. The
level of viremia has been shown to correlate with the viral
dissemination to the CNS [111]. Therefore, the early immune
responses may be critical to limiting the neuropathogenesis of
neurotropic virus.

Infection of leukocytes within secondary lymphoid tissues
leads to activation of the innate immune response, including
antiviral cytokine expression, expansion of leukocytes, anti-
gen processing, and presentation to T cells. Pathogen-
recognition receptors (PRRs) in infected cells recognize
pathogen-associated molecular patterns associated with
RNA viruses at multiple stages during the replication cycle.
Endosomal nucleic acids sensors Toll-like receptor (TLR)3
and TLR7 are capable of sensing viral double-stranded RNA
and single-stranded RNA, respectively, during cell entry,
while the cytoplasmic double-stranded RNA sensors,
retinoic-acid inducible gene I (RIG-I) and melanoma
differential-associated gene 5 (MDA5) can identify viral
RNA products during replication. RIG-I and MDA5 have
been demonstrated to recognize WNV and VEEV in vitro.
Although their role in shaping VEEV infection in vivo has
not been explored [112, 113], RIG-I and MDA5 are essential
for control of WNV replication in the periphery. Mice lacking
mitochondrial antiviral-signaling protein (MAVS), the central
adaptor to both RIG-I and MDA5 signaling, exhibited in-
creased viremia and viral load in peripheral tissues [114].
However, MDA5 itself has been demonstrated to play a lim-
ited role in controlling WNV replication in the periphery
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[115]. Ablation of TLR3 results in mildly increased WNV
burden in peripheral tissues [116, 117]. However, these stud-
ies have described opposing phenotypes regarding survival
during WNV infection of TLR3–/– mice. TLR7–/– mice are
more vulnerable to WNV infection and exhibit increased vi-
remia, independently of regulation of cytokine expression
[118]. For the bunyavirus, LACV, both endosomal cytosolic
PRRs are necessary for survival and type 1 interferon (IFN)
production [119].

The type I IFN response is a critical component of the
regulation of viral infection. Ablation of the IFN-α/β receptor
results in enhanced lethality in many arboviruses, including
WNV [120, 121], VEEV [122–124], and LACV [125, 126].
Additionally, exogenous IFN-α promotes survival by
inhibiting peripheral replication of WNV and VEEV [127,
128]. Activation of PRRs results in activation of IFN regula-
tory factors (IRFs) 3 and 7, expression of type 1 IFNs, IFN-α
and, IFN-β, which induce the expression of IFN-stimulated
genes (ISGs). Several antiviral ISGs, including protein kinase
RNA-activated (PKR), 2’5’-oligoadenylate synthase (OAS),
members of the poly (ADP-ribose) polymerase family and
IFN-induced transmembrane protein family members have
global effects on the cell in order to restrict viral replication.
PKR inhibits both host and viral translation by regulating eIF-
2α. Viremia is increased in PKR–/– mice, an effect that is
independent of PKR-dependent augmentation of IFN expres-
sion [110, 129]. OAS generates 2’5’-oligoadenylates to acti-
vate RNase L to degrade viral and cellular RNAs. RNaseL–/–

mice exhibit higher WNV viral loads in peripheral tissues.
Members of the poly (ADP-ribose) polymerase family block
translation and replication of VEEV [130, 131]. IFN-induced
transmembrane protein family members play a key role in
limiting bunyavirus, including RVFV and LACV, replication
by inhibiting viral membrane fusion in the endosome [132].

The innate immune response is critical for the limitation of
viral propagation, especially during early infection. However,
viral clearance in the periphery is dependent on the adaptive
immune response. Both T and B lymphocytes are critical, as
severe combined immunodeficiency, RAG1, or B cell-defi-
cient, μMT mice all exhibit enhanced lethality to both WNV
and VEEV [133, 134]. Activation of B cells by infected DCs
within lymph nodes induces neutralizing antibody responses,
which is critical for viral clearance in the periphery [135].
Specifically, it is IgM that is essential for clearance of WNV
or VEEV from the blood [136]. IgG is more critical for limit-
ing dissemination and clearance from infected tissues.

Type II IFN (IFN-γ), which is produced by γδTcells, CD8
T cells and natural killer cells, also exerts an antiviral role in
the periphery. Mice lacking IFN-γ or IFN-γ receptor exhibit
increased viremia and viral burdens in lymphoid tissues lead-
ing to early CNS invasion and decreased survival [137].
Similarly, γδT cells, in part through action as IFN-γ pro-
ducers, are necessary to limit WNV viremia [138]. However,

in an intranasal inoculation model of WNV-induced seizures,
IFN-γ was immunopathogenic, as IFN-γ–/– mice displayed
resistance to induction of limbic seizures.

Entry of Arboviruses into the CNS

Shortly after viremia, arboviruses enter the CNS via several
mechanisms, depending on host and viral factors. Despite
years of intensive research, the exact mechanisms by which
arboviruses enter the CNS remain unclear. However, several
pathways have been described as outlined below (Fig. 1).

Arboviral infections typically occur in highly enervated
dermis, which may lead to viral entry into the CNS through
peripheral neurons. Both in vitro and in vivo studies have
shown that WNV can spread along neurons via retrograde
axonal microtube-mediated transport [139, 140]. Indeed,
intrasciatic inoculation of hamsters with WNV resulted in in-
fection of spinal cord and acute flaccid paralysis. Similarly,
pretreatment of mice with nocodazole, a microtubule
destabilizing agent, delayed WNV infection of the brain, fur-
ther supporting the involvement of retrograde axonal transport
in CNS invasion [141].

CNS invasion via olfactory bulb has been demonstrated for
several encephalitic arboviruses, including SLEV [142],
MVEV [143], VEEV [144], EEEV [145], and LACV [146].
Soon after onset of viremia, viral particles exit the fenestrated
capillaries beneath the mucosa of the nasal cavity. There, they
are directly exposed to olfactory sensory neurons (OSNs),
which are highly susceptible to infection. OSNs reside in the
olfactory neuroepitheliumwith dendritic terminals that project
into the nasal cavity and axonal projections that extend the
cribiform plate into the glomerular structures of the olfactory
bulb, thereby providing an axonal pathway for neurotropic
viruses to gain access to the CNS. Infection of OSNs is
followed by viral spread into the olfactory bulb via the anter-
ograde axonal pathway [142, 144]. Once inside the olfactory
bulb, the virus disseminates rapidly to the brain tissues.
Importantly, previous reports have shown that VEEV and
EEEV infection of nonhuman primates through the aerosol
pathway does not require development of viremia for
neuroinvasion [147, 148].

CNS infection by arboviruses typically occurs shortly after
viremia, suggesting the bloodstream as a critical route for
CNS entry across the blood–brain barrier (BBB). The BBB
is a tightly regulated interface that separates the CNS from the
circulating blood. This barrier is composed of a basal mem-
brane, brain microvascular endothelial cells (BMECs), with
extensive tight junctions (TJs) and adherens junctions, which
are ensheathed by pericytes and astrocyte end-feet [149].
Virus may enter via either direct infection of BMECs, passive
diffusion through the BBB, transcellular transport through
BMECs, or by paracellular migration between endothelial
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TJs after BBB disruption. Although BMECs have been shown
to be infected by several encephalitic arboviruses in vitro
[150–152], there is no strong evidence of arboviral infection
of BMECs in vivo, indicating that BMEC infection is not
necessary for entry to the CNS [153, 154]. Passive diffusion
of virus across the BBB has been proposed previously; yet,
convincing evidence to support this hypothesis has still to be
demonstrated. However, WNV is transcellularly transported
from the apical to basolateral side of murine BMECs in vitro,
independently of replication and without impairing the integ-
rity of TJs [150, 155]. Likewise, ultrastructural studies in in-
fected mice revealed JEV within endocytic vesicles of
BMECs [156].

Paracellular entry of virus may occur following disruption
of the TJs of the BBB. In a model of WNV infection using
insect cell-derived WNV, BBB disruption coincided with pe-
ripheral infection and preceded CNS entry [152, 157].
However, recent studies using mice infected with JEV [151],

WNV [158, 159], and tick-borne encephalitis virus (TBEV)
[160] have demonstrated that CNS entry of virus can occur
before BBB disruption. Paracellular entry under these condi-
tions may contribute to a second phase of CNS infection.
Indeed, initial infection of CNS by VEEV via the olfactory
route impairs the BBB leading to a CNS infection through
hematogenous spread [161]. This observation was further sup-
ported by other studies where intracranial inoculation of mice
with VEEV replicon particles resulted in increased expression
of intercellular adhesion molecule 1 (ICAM-1) on BMECs,
followed by BBB disruption [162].

An alternative pathway of CNS infection is the BTrojan
horse^ model in which infected leukocytes cross the BBB,
thereby delivering virus into the CNS. Under normal condi-
tions, BMECs express very low levels of leukocyte adhesion
molecules (i.e., platelet endothelial cell adhesion molecule 1,
ICAM-1 and vascular cell adhesion protein 1). However, in-
fection with alphaviruses and flaviviruses upregulates BMEC

Fig. 1 Routes of arbovirus entry into the central nervous system (CNS). (A)
Infection of olfactory sensory neurons (OSN) in the olfactory
neuroepithelium (ONE) following intranasal inoculation or ONE infection
from fenestrated vessels (FV). CNS entry occurs after viral migration
through the cribiform plate (CP), subsequent infection of mitral cells (MC)
at the glomeruli (G) of the olfactory bulb (OB), and dissemination along
neuronal tracts. (B) Retrograde transport of virus along axon microtubules

(MT) of peripheral neurons facilitates entry into the CNS at the spinal cord.
(C) Virus entry through the blood–brain barrier (BBB) is dependent on
transcellular transport by brain microvascular endothelial cells (BMECs)
of virions or paracellular migration of virions following disruption of tight
junctions (TJ). Infected leukocytes may also facilitate CNS entry via
paracellular or transcellular extravasation – the BTrojan Horse^ model
FV = fenestrated vessel; BMEC = brain microvascular endothelial cells
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expression of these adhesion molecules [151, 163, 164], pro-
moting extravasation of leukocytes into the CNS. Consistent
with this notion, increased expression of ICAM-1 has been
shown to precede CNS invasion of mice infected with WNV
[165]. Additionally, mice deficient in ICAM-1 displayed de-
creased CNS viral loads, diminished neuronal damage, and
reduced BBB permeability following infection with WNV
[166]. The Trojan horse model has also been suggested for
JEV [167, 168]. Nonetheless, whether infected leukocytes
maintain their function to migrate into the CNS remains con-
troversial, as no ultrastructural evidence of virus infection was
observed in infiltrating leukocytes after infection with MVEV,
a zoonotic flavivirus [169]. Collectively, the abovementioned
studies suggest that disruption of BBB can be a prerequisite
for or a consequence of CNS infection, and that arboviruses
seem to utilize multiple pathways for CNS entry, depending
on virus, route of infection, dose, and age.

Neuropathogenesis of Arboviruses

Within the CNS, neurons are the main target cells for enceph-
alitic flaviviruses [154, 170], alphaviruses [107, 145], and
members of the Bunyaviridae and Reoviridae [146, 171,
172]. Arboviral infection of other cell types of the CNS has
also been reported (Table 2), and recent in vitro studies with
ZIKV suggest it may target neural progenitor cells [173–176].
RNA of ZIKV has also been detected in samples of brain

Arboviral neuropathogenesis involves two distinct fea-
tures: neuroinvasiveness and neurovirulence. Neuronal dam-
age and loss can occur by either direct arboviral infection or
indirectly by uncontrolled immune responses to the replicat-
ing virus [181, 182]. In vitro and in vivo studies have shown
that neurons undergo morphologic changes that are character-
istic of apoptosis, that is, nuclear andmembrane condensation,
after infection with several encephalitic flaviviruses, including
WNV [183], JEV [154], TBEV [184], and alphaviruses [145,
185, 186]. Neuronal degeneration, necrosis, and apoptosis
were also demonstrated in various CNS regions in mice in-
fected with LACV [146].

Several mechanisms appear to be involved in the induction
of apoptosis by encephalitic arboviruses. For instance, WNV
and JEV induce neuronal apoptosis through caspase-3 and
Bax signaling pathways [154, 187], depending on brain region
or viral strain [187]. Indeed, mice lacking caspase-3 displayed

Table 2 Susceptibility of central nervous system cells to infection by encephalitic arboviruses

Neurons Astrocytes Microglia BMECs References

In vitro In vivo In vitro In vivo In vitro In vivo In vitro In vivo

Flaviviruses

WNV Yes Yes Yes No Yes No Yes No [152, 286, 287]

JEV Yes Yes Yes Yes Yes Yes Yes Yes/no [151, 288–290]

SLEV Yes Yes NIA Yes NIA Yes NIA No [142, 291, 292]

TBEV Yes Yes Yes No Yes NIA NIA No [198, 241, 293]

MVEV Yes Yes No No No No No No [143, 294]

Togaviridae

VEEV Yes Yes Yes Yes NIA Yes NIA No [185, 204, 295, 296]

EEEV NIA Yes NIA Yes NIA Yes NIA No [107, 145, 297]

Bunyaviridae

LACV Yes Yes NIA Yes NIA Yes/no NIA No [146, 218, 298]

RVFV Yes Yes NIA Yes NIA Yes NIA No [299–301]

Reoviridae

CTFV NIA Yes NIA NIA NIA NIA NIA NIA [171]

POWV Yes Yes NIA Yes NIA Yes NIA No [172, 302, 303]

BMECs = brain microvascular endothelial cells; WNV = West Nile virus; JEV = Japanese encephalitis virus; SLEV = Saint Louis encephalitis virus;
NIA = no information available; TBEV = tick-borne encephalitis virus; MVEV = Murray Valley encephalitis virus; VEEV = Venezuelan equine
encephalitic virus; EEEV = Eastern equine encephalitic virus; LACV = La Cross virus; RVFV = Rift Valley fever virus; CTFV = Colorado tick fever
virus; POWV = Powassan encephalitic virus
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tissue, placenta, and amniotic fluid of newborns with micro-
cephaly and in the stillborn infants of women infected by Zika
during pregnancy [28].

The envelope protein of encephalitic arboviruses is the ma-
jor determinant of neurotropism and neurovirulence, owing to
its role in receptor binding and virus entry [177–179].
However, sequence analysis of virulent and attenuated strains
of these viruses revealed that other regions of the viral ge-
nome, including the 3´ untranslated region and nonstructural
proteins, also contribute to neurovirulence and viral tropism
[180].



reduced neuronal death compared with wild-type mice, de-
spite having comparable viral loads in their brain [183].
Similarly, inhibition of caspase activity reduced WNV-
mediated neuronal death in primary neuronal culture [183].
Both structural and nonstructural proteins of flaviviruses were
involved in caspase-mediated neuronal apoptosis [188–190].
A second mechanism of neuronal apoptosis involves RIG-I-
like receptor (RLR) signaling. While RLR-induced activation
of MAVS exhibits antiviral activity [191], it can cause neuro-
nal death by triggering sterile alpha and TIR motif-containing
1 (SARM1) protein [192]. In this regard, mice lacking
SARM-1 appeared to be more resistant to LACV-mediated
neuronal damage than wild-type mice, despite having similar
viral loads in their brain [192]. Nonetheless, an earlier study
demonstrated a neuroprotective role for SARM-1 against le-
thal WNV infection [193]. Finally, neuronal apoptosis can be
induced by increased expression of apoptotic-related genes,
that is, TNFα, FasL, and TRAIL, which have been shown
following infection with some encephalitic arboviruses such
as TBEVand VEEV [186, 194]. In VEEV-infected mice, neu-
ronal apoptosis was observed in areas of the brain that
contained astrogliosis and inflammation in the absence of viral
antigens [185, 186]. Similarly, apoptosis of uninfected neu-
rons was identified in a primate model of JEV infection [154],
indicating an alternate, indirect mechanism of neuronal death.
A better understanding of molecular elements involved in
arboviral-mediated neuronal apoptosis will provide insights
into mechanisms of neurodegeneration and will aid in devel-
opment of antiviral therapies.

While inflammatory responses within the CNS play an
important role in both control and clearance of viral infection,
uncontrolled responses can be neuropathogenic. Indeed,
neuropathogenesis of arboviruses has been often associated
with neuroinflammation, which can cause neuronal death
and disruption of the BBB. Following CNS infection by arbo-
viruses, both infected target cells and bystander cells release
an array of chemokines and proinflammatory cytokines,
which trigger neuroinflammation. Neurons release several in-
flammatory cytokines, such as interleukin (IL)-1β, tumor ne-
crosis factor (TNF)-α, and IL-6 in response to infection by
encephalitic flaviviruses, such as WNV and JEV [195]. As
well as impairing BBB integrity [152], elevated levels of IL-
1β can induce cell cycle arrest and apoptosis in neural precur-
sor cells (NPCs) [196]. TNF-α impairs glutamate uptake by
astrocytes, leading to neuronal death due to excitotoxicity
[197]. Consistent with this, it has been shown that increased
expression of TNF-α after infection with WNV and JEV is
correlated with neuronal death [154, 195], and that neutraliz-
ing antibodies specific for IL-1β and TNF-α protected neu-
rons from WNV-induced cell death [195]. The release of in-
flammatory cytokines by neurons can trigger gliosis (i.e.,
microglial and astrocyte activation), which is one of the major
hallmarks of arboviral neuropathogenesis [154, 186, 198].

Although glial cells are not generally as permissive to
arboviral infection as neurons, they releasemanymore inflam-
matory mediators, which is likely to perturb the balance be-
tween protective and pathogenic immune responses [199].
Activated astrocytes and microglia play an important role in
inflammatory responses during natural infection with enceph-
alitic flaviviruses, namely JEV [200], WNV [201], and TBEV
[198], as well as encephalitic alphaviruses [186]. Upon acti-
vation, astrocytes and microglia release several chemokines
and cytokines such as TNF-α, IL-6, C-X-C motif chemokine
ligand (CXCL)10, chemokine (C-Cmotif) ligand 2, monocyte
chemoattractant protein-1, RANTES, IFN-γ-induced protein
10, and matrix metalloproteinases [154, 195, 202–204].
Elevated levels of matrix metalloproteinases disrupts BBB
by degrading TJ proteins [203, 205], allowing unrestricted
entry of leukocytes into the brain, which further exacerbates
neuroinflammation. Activated microglia also release nitric ox-
ide (NO) in response to infection with flaviviruses [202, 206].
While NO clearly has antiviral activities, a high level of NO is
toxic to neurons, and its antiviral effects can also be virus
specific [206]. Consistently, high levels of NO was correlated
with accelerated death in mice infected with VEEV [186], and
its inhibition prolonged survival time in TBEV-, MVEV-, and
VEEV-infected mice [204, 206, 207]. Alternatively, inflam-
matory responses can result in formation of reactive oxygen
species, which, in turn, triggers neuronal death. Notably, at-
tenuated strains of VEEV and TBEV induced delayed or no
cytokine response in the CNS, despite displaying similar tis-
sue tropism or replication kinetics [186, 208]. A recent study
also showed that it is not virus itself but the inflammatory
responses that cause BBB disruption following JEV infection
of mice [151]. Thus, the extent of host immune responses is
positively linked to neuropathogenesis of some encephalitic
arboviruses.

Innate Immune Response to Arboviruses in the CNS

As in peripheral organs, the innate intracellular responses are
the first line of defense against invading pathogens in the
CNS. These rapid antiviral responses are particularly impor-
tant in controlling viral replication and thus preventing irre-
versible loss of neurons. Type I IFN signaling is a key com-
ponent of these responses, and it is triggered by recognition of
arboviral pathogen-associated molecular patterns via PRRs
(i.e., TLRs, NOD-like receptors, and RLRs), which are
expressed by neurons and glial cells in the CNS [209]. RIG-
I andMDA5 appeared to be involved in the induction of type I
IFN against WNV, such that disruption of these pathways
abolished activation of the antiviral response to WNV [191].
In addition, mice deficient in MAVS showed increased in-
flammation in CNS with no protection against WNV [114].
Similarly, lack of MAVS in primary cortical neurons was
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associated with enhanced virus production after infection with
WNV. These cells were also less efficient at expressing IFN-β
and ISGs relative to wild-type cells [114]. Thus, RLR signal-
ing appears to play a regulatory role in modulating innate
immune responses in the CNS against flaviviruses. RIG-I-
mediated induction of type I IFNs has also been shown fol-
lowing infection with other encephalitic arboviruses, such as
LACVand JEV [210, 211].

The role of TLR signaling in induction of protective im-
mune responses against arboviral infections remains contro-
versial. TLR3-deficient mice displayed increased viral load in
the brain following intracranial challenge with WNV [116].
Likewise, lack of TLR3 in mice infected with JEV was asso-
ciated with higher frequency of inflammatory monocytes in
the CNS, enhanced number of activated microglia, and elevat-
ed levels of IL-6 and TNF-α in the CNS, along with increased
BBB permeability [212]. However, ablation of TLR3 did not
alter virus titers in the CNS after intracranial inoculation of
mice with JEV [212]. Conversely, in another study there was
no significant difference in survival between wild-type and
TLR3-deficient mice after intracranial infection with WNV
[117]. Additionally, TLR3 was suggested to be a risk factor
for severity of TBEV infections [213]. Further studies using
other encephalitic arboviruses are therefore needed to better
clarify the role of TLR3 responses in the CNS against invad-
ing neurotropic viruses.

Brain-specific TLR7 knockdown (TLR7KD) mice showed
no significant differences in susceptibility to JEV compared
with wild-type mice when subcutaneously infected with virus
[214]. However, TLR7KD mice demonstrated reduced levels
of IFN-α mRNA accompanied by increased viral loads and
proinflammatory cytokines in their brain. In addition, they had
reduced levels of two additional antiviral proteins—IFN-in-
duced antiviral RNA-binding protein 1 and OAS-like 1
(OAS1)—in their brain tissues. Similarly, TLR7-deficient
mice displayed higher viral loads in the CNS than wild-type
mice after intracranial inoculation with another flavivirus,
Langat virus. However, the absence of TLR7 did not signifi-
cantly alter the incidence or onset of clinical symptoms [215].
TLRs are also involved in recognition of alphaviruses in the
brain. In this regard, increased expression of multiple TLRs,
namely TLR1, TLR2, TLR3, TLR7, and TLR9, and their
downstream signaling genes (i.e. Nfkb and Irf) were observed
in brain tissues of VEEV-infected mice [216].

Both neurons and glial cells release type I IFNs in response
to arboviral infections [217, 218]. As well as playing a critical
role in controlling viral spread, tropism, and pathogenesis,
IFNs are essential for the formation of TJs [152]. Mice defi-
cient in IFN-α/βR, PKR, or RNAase L (antiviral proteins that
are induced by IFN) displayed increased viral loads in CNS
and accelerated death after intracranial infection with WNV
[110, 121]. Likewise, pretreatment with IFN-α, IFN-β, or
IFN-γ also renders cortical neurons resistance to WNV

infection [110]. The residential glial cells in the brain are ac-
tivated in response to IFN-γ, and express a variety of PRRs
that are involved in recognition of apoptotic-associated mo-
lecular patterns on the surface of apoptotic cells. Although
IFN-γ participated in the clearance of Sindbis virus, a
mosquito-borne alphavirus, from infected neurons [219], it
was dispensable for clearance of WNV from CNS [137].
Collectively, these observations suggest that type I IFN sig-
naling directly modulates viral replication in CNS tissues, and
that IFN-γ is indirectly involved in clearance of apoptotic
cells from the CNS.

Viral Clearance from the CNS

PRR signaling leads to the induction of adaptive immune
responses, which are required for clearance of viral infections
in the CNS [220–222]. Increased permeability of the BBB
following arboviral infection allows entry of B cells and neu-
tralizing Abs (nAbs) into the CNS. Once in the CNS, nAbs
bind cell-free viruses, preventing new viral infections. Mice
deficient for B cells and antibody production demonstrated
higher viral loads in CNS and increased vulnerability to lethal
WNV infection than wild-type mice [221]. Similarly, adoptive
transfer of monoclonal antibodies protected mice from lethal
encephalitis caused by other flaviviruses, namely JEV [223],
SLEV [224], and yellow fever virus [225]. Further, high levels
of JEV-specific IgM and IgG in the CSF was linked to virus
clearance from the CNS and a better clinical outcome in pa-
tients [226, 227]. Development of nAbs was also associated
with longer survival after intracerebral inoculation of mice
with TBEV [208].

Antibody-mediated virus clearance from infected neurons
have also been described for alphaviruses and RVFV
[228–230]. Nonetheless, antibody response appeared to be
dispensable for clearance of VEEV from CNS [231]. In addi-
tion, antibody response was not required for recovery of μMT
mice from encephalomyelitis induced by attenuated strains of
VEEV [232], such that these mice were able to reduce dra-
matically virus titers in the CNS and clear virus from CSF, in
the absence of antiviral antibody.

Elimination of virus-infected cells in the CNS requires a
CD8 T-cell response [233–236]. In response toWNVand JEV
infections, neurons release CXCL10, which is required for
recruitment of CD8 T cells into the brain via the C-X-C che-
mokine receptor (CXCR)3 [151, 170]. Mice lacking CXCL10
displayed high viral loads in the CNS, and increased mortality
after WNV infection [170]. Interestingly, CXCL10 appeared
to be important for clearance of WNV from CNS but not from
peripheral lymphoid tissues [170]. Unlike CXCL10, CXCL12
is constitutively expressed on basolateral surfaces of CNS
endothelial and retains CD8 T cells in perivascular space via
CXCR4 and inhibits their entry into CNS. Hence, inhibition of
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CXCR4 results in enhanced entry of CD8 Tcells into the CNS
and improves mice survival from lethal WNV infection [233].
Further, mice deficient in CD8 T cells, major histocompatibil-
ity complex I, or perforin were unable to clear WNV infection
from CNS, had increased viral burden in the CNS, and
displayed higher mortality rate after infection with WNV than
wild-type mice [137, 236].

CD8 T-cell responses are also important for clearance of
other encephalitic arboviruses from the CNS. For instance,
intracranial, but not peripheral transfer, of anti-JEV effector
cells protected mice from lethal intracranial challenge with
JEV [237, 238]. Nonetheless, CD8 T cells contribute to both
recovery and immunopathology of WNV infection [239], and
the presence of regulatory T cells in the CNS of mice infected
withWNV is associated with reduced immunopathology both
in humans and mice [240]. In addition, the CD8 T-cell re-
sponse was not required for clearance of RVFV from the
CNS [229], or for protection against lethal VEEVencephalitis
[231]. Furthermore, analysis of paraffin-embedded autoptic
brain tissue of human TBEV cases suggest that CD8 T cells
can cause significant neuronal degeneration via induction of
bystander damage [241], and lack of CD8 T cells was corre-
lated with increased survival time inmice infected with TBEV
[242]. Thus, CD8 T-cell response can be beneficial, deleteri-
ous, or both, depending on the virus.

CD4 Tcells can also clear virus from infected neurons via a
noncytolytic pathway, which involve production of IFN-γ.
Adoptive transfer of CD4 T cells into RAG knockout mice
resulted in virus clearance from the CNS and conferred resis-
tance to lethalWNVinfections in the absence of any B cells or
CD8 T-cell responses [243]. In addition, mice deficient in
CD4 displayed prolonged WNV infection in the CNS, and
eventually died 50 days postinfection. Importantly, CD4-
deficient mice showed unaltered viral loads in the spleen,
indicating that CD4 T cells are required for limiting WNV
infection in the CNS but not in the periphery [222]. CD4 T
cells are also required for protection against infection with
other arboviruses, including JEV [237], yellow fever virus
[244], TBEV [242], RVFV [229], and VEEV [231]. CD4 T-
cell response resulted in a dramatic reduction of virus titers in
the CNS and mediated full recovery of μMT mice from
VEEV-induced encephalomyelitis [232].

Susceptibility Factors for Arboviral Encephalitis:
Lessons from Murine Models

The clinical manifestation of arboviral infections in both mice
and humans varies greatly, depending on several host and
virus related factors. The clinical outcomes are also influenced
by the route of viral administration. For instance, dermal in-
oculation of C3H/HeN and BALB/C mice with TC83, a high-
ly attenuated strain of VEEV, is typically avirulent [50].

Nonetheless, aerosol inoculation of C3H/HeN mice with
TC83 led to encephalitis and 100 % lethality [245]. Age is
another determining factor that affects the clinical presentation
of arboviral infection.While immunocompetent individuals of
all ages may present with neurologic symptoms after infection
with WNV, the risk of severe disease increases in elderly, as
well as immunocompromised, hosts. Lethal infections of
WNV are more prevalent in older individuals [246], despite
a fairly uniform incidence rate among different age groups
[247]. The age-related increased vulnerability to WNV in a
mouse model was correlated to defects in CD4 and CD8 T-cell
responses [248]. CD8 T cells from old mice were severely
inefficient in producing IFN-γ, TNF-α, and granzyme B. In
line with this, passive transfer of IFN-γ or perforin-deficient T
cells into RAG knockout mice did not confer any noticeable
anti-WNV protection [248]. Dysregulation of TLR3 and
TLR7 responses in the elderly has also been associated with
enhanced vulnerability to lethal WNV infections [249, 250].

In contrast to WNV, JEV demonstrates particular tropism
for developing neurons and NPCs [251]. Hence, children are
at high risk of developing neurologic problems after JEV in-
fection. Although JEV infection does not affect viability of
NPCs, it severely impairs their proliferation ability [251].
Likewise, severity of LACV infections reduces with increas-
ing age, both in humans and mice [119, 252]. Weanling mice
displayed reduced type I IFNs responses, which was associat-
ed with high viral loads in the brain and severe neurologic
disease. In contrast, strong production of type I IFN in adults
limited virus dissemination to the CNS and provided protec-
tion against lethal LACV. Notably, differences in myeloid DC
responses between weanling and adult mice were accounted
for vulnerability to LACV-induced neurologic disease [119].
Similarly, maturation of neurons in vitro restricted replication
of several arboviruses, including Sindbis virus, VEEV,
WEEV, and LACV [253, 254], and delayed virus-induced
translational arrest [254], which allows a longer period for
production of antiviral proteins by the host. Indeed, early re-
striction of virus replication in the periphery contributed to
age-dependent resistance to alphaviruses [255].

Type I IFN responses also appear to be important for pla-
cental infection with ZIKV. In a recent publication, two mu-
rine models of placental and fetal disease associated with in
utero transmission of ZIKVwere established via use of genet-
ic deletion or antibody neutralization of IFN-α/IFN-β recep-
tor [256]. These models may facilitate the study of the terato-
genicity of ZIKV and allow testing of therapies and vaccines
to prevent congenital malformations.

The incidence and severity of arboviral infection is also
influenced by genetic variations in the host. Results from pre-
vious cohort studies revealed a direct correlation between
CCR5 Δ32 homozygosity and symptomatic disease during
infections with WNV and TBEV [257, 258]. However, the
results from recent follow-up studies using larger cohorts
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failed to show any association between CCR5 deficiency and
symptomatic infection with WNVor TBEV [259]. These dis-
crepancies may be explained by differences in study design,
cohort size, and the control populations used in these studies.
Infection of mice with WNV led to an increase in the expres-
sion of CCR5 and its ligand, which was associated with en-
hanced migration of leukocytes into the brain and protection
of mice against lethal infection [260]. Strong correlation be-
tween WNV infection and single nucleotide polymorphisms
in IRF3, myxovirus resistance protein 1 and OAS1 was also
observed by other studies [259, 261]. Similarly, genetic vari-
ations within the human OAS1 gene was found to modulate
the outcome of infections with TBEV [262], and individuals
with major histocompatibility complex B49 on CD8 T cells
appeared to be more vulnerable to lethal LACV infections
[263]. Elucidating the host genetic factors contributing to
arboviral pathogenicity is imperative for identification of in-
dividuals that are at high risk of severe arboviral-induced dis-
ease, and providing potential therapeutic targets.

Treatment and Prevention of Arbovirus Neurologic
Infections

There are currently no approved antiviral medications for the
treatment of neurologic infections with arboviruses.
Symptomatic relief may be provided with the use of antipy-
retics, fluid reconstitution in cases of severe emesis, or use of
life support to maintain respiratory and circulatory systems as
the infection is cleared or in the event of organ failure. In the
following sections, we highlight treatments currently under
investigation for encephalitis due to JEV, WNV, and LACV,
and licensed and investigational vaccines used to prevent ar-
bovirus infections.

JEV

Several investigators have highlighted the role of oxidative
stress in neuronal apoptosis during JEV infection of the
CNS. Consequently, several antioxidants have been studied
to evaluate therapeutic efficacy during CNS infection with
JEV. Minocycline, a semisynthetic derivative of tetracycline,
was shown to protect mice from challenge with JEV when
treatment is initiated within 24 h of infection [264]. Themech-
anism of action of minocycline was shown in a variety of
studies to involve inhibition of oxidative stress with reduction
of reactive oxygen species [265, 266]. In a recent randomized
controlled clinical trial, trends towards better outcomes were
observed when minocycline was administered to individuals
over the age of 12 years [267]. However, larger studies are
needed to determine the true clinical efficacy of minocycline
for JEV encephalitis. Similarly, arctigenin, a lignin derived
from the greater burdock (Arctium lappa), was shown to

inhibit oxidative stress from microglial activation and protect
mice from challenge with JEV [268]. However, this agent has
not been evaluated in clinical trial. Additional antioxidants
have been evaluated for effects on JEV-mediated cell injury
in vitro. These include the peroxisome proliferator-activated
receptor-α agonist fenofibrate [269], and curcumin, a natural-
ly occurring phenolic compound extracted from the rhizome
of Curcuma longa L. [270]. However, these have not yet been
tested in animal models.

There are two JEV vaccines that are licensed in the USA.
An inactivated mouse brain-derived JE vaccine (JE-VAX; The
Research Foundation for Microbial Diseases of Osaka
University, Osaka, Japan), was originally licensed in 1992 to
prevent JE in persons aged≥1 year that are traveling to JEV-
endemic countries [271]. However, as production of this vac-
cine has ceased, supplies are limited. In March 2009, an
inactivated Vero cell culture-derived vaccine (IXIARO;
Valneva Austria GmbH, Wien, Austria) was licensed for use
in persons aged≥17 years [272, 273].Mouse brain-derived JE
vaccine is now the only JE vaccine available for use in chil-
dren aged 1−16 years and is being reserved for this age group.
Other JEV vaccines, including live-attenuated SA14-14-2
JEV vaccine, are manufactured and used in Asia but are not
licensed for use in the USA [274].

WNV

The critical role of type I IFN in virologic control during
WNV infection has led to the use of IFN-α in human WNV
infections, with varying results [152, 275]. In 1 report, 2
middle-aged patients with encephalitis exhibited marked im-
provement in CNS function after 2 doses, and had limited
neurologic sequelae with almost complete recovery [276].
However, despite treatement with IFN-α, an elderly patient
with WNV encephalitis and flaccid paralysis died [277].
Clinical trials are needed to better evaluate the efficacy of
IFN-α in patients of varying ages with WNVencephalitis.

While there are 4 US Department of Agriculture-approved,
licensed vaccines to prevent illness due to WNV infection for
horses, there are no licensed vaccines for prevention of disease
in humans. However, there is currently an ongoing National
Institutes of Health-sponsored clinical trial using WNV
inactivated with HydroVax-001, a novel, hydrogen peroxide-
based process that inactivates virus while preserving immuno-
reactive surface structures [278].

LACV

Early studies examining antiviral agents demonstrated that
ribavirin inhibits the transcription of the LACV genome in
host cells [279]. Several case reports of its use in the setting
of severe LACV encephalitis suggested it may improve out-
come [280, 281]. In phase I, IIA, and IIB clinical trials,
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however, higher doses were needed to achieve appropriate
CSF levels of ribavirin, which led to adverse events that ne-
cessitated trial discontinuation [282]. There are currently no
licensed or investigational vaccines for LACV.

VEEV, EEEV, and WEEV

Treatment of encephalitis due to VEEV, EEEV, or WEEV is
mostly supportive as there are no antiviral treatments for these
viruses. A live-attenuated VEEV vaccine (TC-83) is licensed
for protection of horses in endemic areas. The TC-83 strain
was generated via passage of strain Tr-D 83 times in heart
cells of a guinea pig; C-84 is a derivative of TC-83 [283]. It
is highly reactogenic, causing illness in up to 20 % of recipi-
ents, but poorly immunogenic. Military personnel require
boosters with investigational formalin-inactivated VEEV
[284]. EEEV and WEEV formalin-inactivated vaccines are
available, but are poorly immunogenic with unknown ability
to protect against variant viruses [283, 285]. There are no
prophylactic or therapeutic drugs to prevent or treat, respec-
tively, VEEV, EEEV, or WEEVencephalitis.
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